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Detection of loop closure in visual SLAM: a stacked 
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The current mainstream methods of loop closure detection in visual simultaneous localization and mapping (SLAM) 

are based on bag-of-words (BoW). However, traditional BoW-based approaches are strongly affected by changes in 

the appearance of the scene, which leads to poor robustness and low precision. In order to improve the precision and 

robustness of loop closure detection, a novel approach based on stacked assorted auto-encoder (SAAE) is proposed. 

The traditional stacked auto-encoder is made up of multiple layers of the same autoencoder. Compared with the visual 

BoW model, although it can better extract the features of the scene image, the output feature dimension is high. The 

proposed SAAE is composed of multiple layers of denoising auto-encoder, convolutional auto-encoder and sparse au-

to-encoder, it uses denoising auto-encoder to improve the robustness of image features, convolutional auto-encoder to 

preserve the spatial information of the image, and sparse auto-encoder to reduce the dimensionality of image features. 

It is capable of extracting low to high dimensional features of the scene image and preserving the spatial local charac-

teristics of the image, which makes the output features more robust. The performance of SAAE is evaluated by a 

comparison study using data from new college dataset and city centre dataset. The methodology proposed in this paper 

can effectively improve the precision and robustness of loop closure detection in visual SLAM. 

Document code: A Article ID: 1673-1905(2021)06-0354-7 

DOI  https://doi.org/10.1007/s11801-021-0156-9 
 
 

                                                        
*  This work has been supported by 　 the National Natural Science Foundations of China (No.51905065), the Youth Program of National Natural 

Science Foundation of China (No.61703067), the Science and Technology Planning Project of Changshou District in Chongqing, China 
(No.CS2020007), and the Technology Innovation and Application Demonstration Project of Science and Technology Bureau of Beibei District 
in Chongqing of China (No.2020-5). 

**  E-mail: xiaoyt_cqupt@163.com 

Simultaneous localization and mapping (SLAM)[1] refers 
to real-time localization and construction of a quantita-
tive map of the environment as the robot moves through 
the unknown environment. Visual SLAM is capable of 
building three-dimensional (3D) maps of the environ-
ment in real time by using the camera as a sensor. A 
complete visual SLAM system consists of four modules: 
visual odometry, optimization, loop closure detection, 
and mapping[2]. Loop closure detection is a key module 
in visual SLAM, which plays a significant role in elimi-
nating accumulated errors. 

Loop closure detection is to determine whether the 
robot has returned to a certain position in the map when 
the current observation information and map information 
are given[3]. It is determined to be a loop closure when 
the similarity between the scene image at current loca-
tion of the mobile robot and the previously visited scene 
image is greater than a set threshold. The most frequently 
used method is bag-of-words (BoW)[4]. The fast appear-

ance based mapping 2.0 (Fab-Map 2.0) algorithm pro-
posed by Cummins et al[5] used the external data image 
features of the explored area to form a BoW, and judged 
whether a loop closure is formed through comparing the 
vector probabilities generated by the two locations. To 
further improve the speed, DBoW2 (distributed 
bag-of-words, DBoW) was proposed, and Galvez-Lopez 
et al[6] built vocabulary trees to discretize the binary de-
scription space, a hierarchical structure that makes vo-
cabulary lookups more convenient. Garcia-Fidalgo et al[7] 
introduced incremental bag-of-words loop closure detec-
tion (iBoW-LCD). The presented approach made use of 
an incremental bag-of-words (iBoW) scheme based on 
binary descriptors to retrieve previously seen similar 
images, avoiding any vocabulary training stage usually 
required by classic BoW models. Liu et al[8] took ad-
vantage of the global feature descriptor for loop closure 
detection. Zhang et al[9] applied the perspective invariant 
binary feature descriptors of images to an iBoW. Bampis 



LUO et al.                                                                  Optoelectron. Lett. Vol.17 No.6·0355· 

et al[10] segmented the image into sequences according to 
the motion trajectory, generating a description vector that 
can describe the overall characteristics of the scene for 
loop closure detection. G. Zhang et al[11] proposed a vo-
cabulary construction algorithm called hierarchical se-
quence information bottleneck (HSIB) based on mutual 
information maximization mechanism (MMI), which 
enhanced the performance of loop closure detection al-
gorithm. Liu et al[12] presented a loop closure detection 
algorithm based on CNN words. In this method, the ele-
ments of feature maps from the higher layer of the CNN 
are clustered to generate CNN words (CNNW). It inher-
its the characteristics of both CNN features and BoW 
methods. The original global description is transformed 
into a local description, and the data noise resistance is 
enhanced. Azam et al[13] proposed a novel approach us-
ing supervised and unsupervised deep neural networks 
based on super dictionary that does not need to generate 
vocabulary, which makes it memory efficient and instead 
it stores exact features. The supervised learning tech-
nique helped to avoid mobile objects to reduce the risk of 
false correspondence, whereas unsupervised learning 
technique is used to detect the possibility of loop closure 
to make it faster to process frames. The results proved 
that it could effectively detect loop closures even from 
slightly different viewpoints and in the presence of oc-
clusions. However, BoW is very sensitive to environ-
mental changes due to artificial-based design. It cannot 
provide a robust image feature description in actual 
scenes, resulting in a significant reduction in the preci-
sion of loop closure detection. 

The combination of deep learning and loop closure 
detection mainly focuses on using deep neural networks 
to generate better descriptions of scene images. Gomez 
Ojeda R et al[14] trained AlexNet with Places dataset to 
extract features for loop closure detection. Gao et al[15] 
presented a loop closure detection algorithm based on 
stacked denoising auto-encoder (SDA), which obtained 
better results than the Fab-Map 2.0 algorithm proposed 
by Cummins et al[5]. However, the model extracts feature 
with high dimensionality and does not take into account 
the spatial local characteristics of images, which cause a 
poor robustness. Merrill N et al[16] devised a loop closure 
detection algorithm called convolutional auto-encoder 
for loop closure (CALC) based on a convolutional au-
to-encoder, in which the coding layer of the trained 
model is used as a feature extractor for visual SLAM 
keyframes. Although it performs well in datasets with 
drastic changes in illumination and viewing angle, the 
precision is limited. Burguera A et al[17] presented a 
Neural Network based on an autoencoder architecture, in 
which the decoder part is being replaced by three fully 
connected layers, aiming at robust and fast visual loop 
detection in underwater environments. Wang et al[18] 
proposed the stacked convolutional and autoencoder 
neural networks (SCANN) model for loop closure detec-

tion in visual SLAM based on the basic structure of 
convolutional neural networks. Image features extracted 
using the SCANN model have multiple invariances in 
image transformation. These features are more suitable 
for complex and varied real-world environments. Aritra 
et al[19] proposed a 12-layer deconvolution net that en-
codes and decodes an image to itself to learn the repre-
sentation. The use of locally connected autoencoders in 
the network drastically reduces the dimension without 
significant loss in retaining the contextual information. 
Chen et al[20] developed a loop closure detection algo-
rithm based on multi-scale deep feature fusion, which 
has strong robustness to environmental changes. Howev-
er, the model needs to be trained using datasets contain-
ing a large number of labels, which is very difficult in 
practice. 

In order to improve the precision and robustness of 
loop closure detection, a novel approach based on 
stacked assorted auto-encoder (SAAE) is proposed. The 
proposed SAAE is composed of multiple layers of de-
noising auto-encoder, convolutional auto-encoder and 
sparse auto-encoder. It is able to extract the features of 
the scene image and then output the features for loop 
closure detection. This unsupervised learning-based 
network model performs well in terms of generalization 
capability and robustness, and the dataset used for train-
ing does not need to carry labels, reducing the manual 
labeling effort. 

Suppose there are two keyframes fi and fj, each 
keyframe can be expressed as t feature vectors: 
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In loop closure detection, the similarity threshold for 
images is selected according to the following rules: tak-
ing a prior similarity s(ft, ft−Δt), it represents the similarity 
of the keyframe image at a certain moment to the 
keyframe at the previous moment. Other scores are nor-
malized with reference to this value: 
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If the similarity of the current frame to a previous 
keyframe is more than three times to the last keyframe, it 
is considered that there may be a loop closure. The pur-
pose of this method is to avoid introducing absolute sim-
ilarity threshold, so that the algorithm can adapt to more 
environments[21]. 

The keyframe feature vector Vk is extracted by the 
proposed stacked assorted auto-encoder (SAAE), and its 
similarity score is calculated with the historical keyframe 
feature vector V1, V2, …, VN. If it is greater than the set 



·0356·                                                                          Optoelectron. Lett. Vol.17 No.6 

threshold, it is judged to be a loop closure. The process is 
shown in Fig.1. 

 

 

 
Fig.1 Loop closure detection process 

 
Auto-encoder consists of input layer (x), hidden layer 

(h), and output layer (y)[22]. It reconstructs the input data 
by encoding and decoding, obtaining the hidden layer 
representation of the input data, so as to achieve the 
purpose of feature extraction. The mapping from the in-
put layer (x) to the hidden layer (h) of the encoder is 
called encoding, which can be expressed as 

h=fθ(x)=σ(ωx+b).                           (4) 
The mapping between the hidden layer (h) and the 

output layer (y) is called decoding, as shown in the fol-
lowing formula: 

y=gθ'(h)=σ(ω'h+b').                          (5) 
An error function is defined. By adjusting the parame-

ters, the error between input sample and the reconstruc-
tion result converges to a minimum. The expression is as 
follows: 

L(x, y)=||x−y||2.                             (6) 
Denoising auto-encoder (DAE) is a variant of au-

to-encoder[23], which has better robustness and generali-
zation ability. The structure of denoising auto-encoder is 
shown in Fig.2. The artificial input contains noise, and 
the clean input signal is reconstructed through the hidden 
layer. 

 

 

Fig.2 The structure of denoising auto-encoder 
 

Convolutional auto-encoder (CAE) uses convolutional 
layers and pooling layers to replace the original fully 
connected layers, which has the characteristics of local 
connection and weight sharing. It can well retain the spa-
tial local characteristics of images and be used as a hier-
archical unsupervised feature extractor that adapts well 
to high-dimensional inputs[24]. The structure of convolu-
tional auto-encoder is shown in Fig.3. 

 
Fig.3 The structure of convolutional auto-encoder 

 
Generally, the number of hidden layer nodes of the 

auto-encoder is set to be smaller than the number of in-
put layer nodes to reduce the dimensionality of the input 
signal. In order to learn high-dimensional sparse features, 
the sparsity constraint is added to the hidden layer nodes, 
then a sparse auto-encoder (SAE) is obtained[25]. By sup-
pressing most of the output of hidden layer neurons, the 
network achieves a sparse effect. On the basis of ensur-
ing the precision of model reconstruction, it improves the 
performance of the model by greatly reducing the data 
dimension[26]. 

Sparse auto-encoder achieves inhibition by constrain-
ing the average activation value of the hidden layer neu-
ron output, using Kullback-Leibler (KL) divergence[27] to 
force it to approximate a given sparse value, and adding 
it as a penalty term to the loss function. 

Stacked auto-encoder[28], which is a neural network 
composed of multiple auto-encoders. The output of the 
former auto-encoder is used as the input of the latter au-
to-encoder. Stacked auto-encoder outperforms single 
auto-encoder by extracting deep features of images. Tra-
ditional stacked auto-encoder is often built with multiple 
layers of same kind of auto-encoder, a network that can 
easily lose features or create dimensional explosion 
problem. For the purpose of better extracting image fea-
tures and further improving the robustness and generali-
zation ability of the network model, an SAAE is de-
signed in this paper to stack multiple auto-encoders, 
which can well combine the advantages of various au-
to-encoders to obtain a better network model for extract-
ing features of images. 

The proposed SAAE is composed of multiple layers of 
denoising auto-encoder, convolutional auto-encoder and 
sparse auto-encoder. The denoising auto-encoder im-
proves the robustness of the network by artificially add-
ing noise to the input signal. The features extracted by 
the hidden layer contain all the features of input images, 
and the original images can be reconstructed from the 
partially occluded or damaged images. The convolutional 
auto-encoder reduces the number of parameters by shar-
ing weights, which simplifies the training process and 
well preserve the spatial information of images. The 
sparse auto-encoder is capable of extracting sparse fea-
tures of input images, enabling dimensionality reduction 
while maintaining reconstruction precision. The specific 
network structure is shown in Fig.4. 

In this paper, layer-by-layer training is used to train 
the model. Firstly, random noise is added to the training 
sample as input to a denoising auto-encoder, which is 
encoded to learn the low-dimensional features of images. 
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The reconstruction error is continuously reduced by us-
ing gradient descent. When the error reaches a minimum, 
it indicates that the training of the denoising au-
to-encoder is complete. Then, the output layer of the de-
noising auto-encoder is removed and its hidden layer is 
used as input for training the convolutional auto-encoder. 
The coding part of the convolutional auto-encoder de-
signed in this paper consists mainly of four convolutional 
layers, all of which use small-sized convolution kernels 
to extract depth features, while ensuring the size of the 
local receptive field and reducing the parameters of the 
model. The decoding part consists of a three-layer fully 
connected network. After the original image is passed 
through the denoising auto-encoder and the convolution-
al auto-encoder, low-dimensional to high-dimensional 
feature extraction can be done layer by layer. Finally, the 
coding layer of the convolutional auto-encoder is used as 
input, with the sparsity constraint added to train the 
sparse auto-encoder, which reduces the dimensionality 
while extracting the abstract features of the image. The 
training hyper-parameters of SAAE designed in this pa-
per are shown in Tab.1. 
 

 

Fig.4 The structure of SAAE 
 

Tab.1 Hyper-parameters in SAAE 
 

Parameter Value 

Learning rate 0.01 

Training epochs 500 

Noise addition rate 0.15 

Sparse coefficient 0.005 

 
Stochastic gradient descent (SGD)[29] is used to iterate 

the network parameters. Fig.5 shows the training results at 
different learning rates. When the learning rate is set to 1.0, 
the error value always fluctuates around the initial value 
and cannot converge; when the learning rate is set to 0.5, 
the reconstruction error has a significant downward trend 
during the first 50 training epochs, and then keeps a small 
fluctuation, but fails to converge to the expected minimum; 
when the learning rate is set to 0.01 and 0.1, the recon-
struction error curves exhibit nearly identical decreasing 
and converging trends, but the curve convergence trend 
corresponding to the learning rate of 0.01 is smoother. 
Therefore, this experiment set the learning rate at 0.01 and 
the number of training epochs 500. 

  
Fig.5 The training results at different learning rates 

 
To train the denoising auto-encoder, random noise is 

added to the training sample, the result x  is input to the 
input layer, random noise v obeys a normal distribution 
with a mean of 0 and variance of σ2. The noise addition 
rate is set to 0.15. 

x x vx  .                                (7) 
 
To train the sparse auto-encoder, the KL divergence is 

added to the loss function as a regular term to constrain 
the sparsity of the network. The loss function can be 
written as 
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where β is the weight of the sparse penalty term, which 
can take any value between 0 and 1. ˆ j is the training 
sample on the hidden layer neuron j of the average acti-
vation value, and aj is the activation value on neuron j of 
the hidden layer. To achieve the effect that most of the 
neurons are inhibited, the sparse coefficient ρ generally 
takes a value close to 0. In this experiment, the sparse 
coefficient ρ is set to 0.005. 

The convolutional auto-encoder involves many pa-
rameters, so they are listed separately, as shown in Tab.2. 
The pre-processed 160×120 images are used as input for 
training the convolutional auto-encoder. The coding part 
mainly includes four convolutional layers. In each layer 
of convolution operation, the convolution kernel moves 
along the x-axis and y-axis of the image. The first con-
volution layer has a convolution kernel size of 5×5, 
number of 32, stride of 1, padding of 2, pooling kernel 
size of 3×3, pooling stride of 2, using a local connection 
method, connecting 5×5 regions at a time, generating a 
32×79×59 feature map after convolution and pooling. 
Subsequent calculations can be deduced by analogy. The 
second and third convolutional layers have identical pa-
rameters. The fourth convolutional layer has a convolu-
tional kernel size of 3×3, number of 8, and stride of 1. 
After convolution and pooling, an 8×17×12 feature map 
can be generated. In the process of generating feature  
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maps, a weight-sharing strategy is adopted; in the process 
of moving the convolution kernel, the local field of view is 
gradually expanded to achieve the same effect as the full 
connection, while effectively reducing the number of 
parameters and saving computing space. 

 
Tab.2 Parameters in CAE 

 
Parameter Conv 1 Conv 2 Conv 3 Conv 4

Conv kernel size 5×5 3×3 3×3 3×3 

Kernel numbers 32 64 64 8 

Conv stride 1 1 1 1 

Pool kernel size 3×3 3×3 3×3 - 

Pool stride 2 2 2 - 

Padding 2 1 1 - 

 
New college and city centre datasets[30] are standard 

datasets for evaluating the performance of visual SLAM 
loop closure detection algorithms. These two datasets are 
collected by a mobile robot platform carrying two cam-
eras (one on each side), by which the distance traveled is 
1.9 km and 2.0 km respectively. Images were collected 
approximately every 1.5 m of movement. The details of 
datasets are shown in Tab.3. These two datasets have 
manually calibrated ground truth loop closure, which can 
be used to compare with the loop closure obtained by the 
algorithm, so as to calculate the precision and recall. 

 
Tab.3 The details of datasets 

 

Dataset New college City centre 

Number (frame) 2 146(1 073 pairs) 2 474(1 237 pairs)

Image size 640×480 640×480 

Frequency 0.5 Hz 0.5 Hz 

Image type RGB RGB 

Description outdoor outdoor 

Weather sunny sunny 

Year 2008 2008 

Sensor Two cameras Two cameras 

 
The loop closure detection algorithm may be tested on 

a dataset with the four cases[31] shown in Tab.4. 
 
Tab.4 Classification of loop closure detection results 

 
       Fact 
Detection 

True False 

Positive True positive (TP) False positive (FP) 

Negative False negative (FN) True negative (TN) 

 
In this paper, precision and recall are used to evaluate 

the performance of the algorithm. The specific represen-
tation is as follows: 

 
TP

Precision
TP FP




,                       (11)
 

TP
Recall

TP FN



.                          (12) 

In visual SLAM, there is a higher demand for preci-
sion, and good algorithms can still guarantee good preci-
sion at higher recall. 

In this paper, a deep learning server is used to train an 
SAAE. Places365-Standard dataset[32] is used for training 
model, which is a scene-centric dataset. It has 1 803 460 
training images with the image number per class varying 
from 3 068 to 5 000. Before training begins, each image 
in the training image set is converted to grayscale, 
resized to 120×160, then the training image pair obtained 
through the viewpoint variations is used as input. The 
well-trained model is used to learn the input images, and 
the output features are used for loop closure detection. 
Algorithm performance is tested on the new college and 
city centre datasets. The deep learning server configura-
tions used for the experimental simulations are shown in 
Tab.5. Considering that the image size of the datasets 
used in this paper is 640×480 of which the feature di-
mension is too high, the image size was reduced to 
160×120 by preprocessing. Use the trained network 
model to extract the feature vector of the image to calcu-
late the similarity between the images. If it is greater than 
the set threshold, it is judged as a loop closure. The par-
tial loop closure detected by this algorithm is shown in 
Fig.6. The image pairs with serial No.2 and No.96 in the 
new college dataset form a loop closure, and image pairs 
with serial No.158 and No.681 in the city centre dataset 
form a loop closure. 

 
Tab.5 The configuration of deep learning server 

 
Configuration Details 

CPU Intel Xeon E5-2665, 2.4 GHz 

RAM 16G 

GPU NVIDIA GeForce GTX1080Ti

System Ubuntu 16.04 LTS 

Development environment TensorFlow1.8, Python3.7 

 

  
Fig.6 The partial loop closure detected by proposed 
algorithm 
 

The proposed methodology has compared the perfor-
mance with a classic bag-of-words based approach 
namely Fab-Map[5], a distributed bag-of-words based
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approach namely DBoW2[6], an iBoW based approach 
namely iBoW-LCD[7], a stacked denoising auto-encoder 
based approach namely SDA[15] and a convolutional au-
to-encoder based approach namely CALC[16]. To com-
pare with other methods, precision-recall curves have 
been generated for all, as shown in Fig.7.  

 

  

  
Fig.7 The precision-recall curves of the six methods 

 
The precision of each algorithm on the new college 

and city centre datasets is shown in Tab.6 when the recall 
for loop closure detection is 80%. 
 

Tab.6 Corresponding precision at 80% recall 
 

Dataset Method Precision 

New college 

Fab-Map 23.8% 

DBoW2 36.2% 

iBoW-LCD 45.9% 

SDA 50.7% 

CALC 59.6% 

Ours (SAAE) 77.6% 

City centre Fab-Map 3.1% 

DBoW2 12.3% 

iBoW-LCD 21.1% 

SDA 36.3% 

CALC 39.2% 

Ours (SAAE) 51.2% 

It can be seen from the chart that the average precision 
of the algorithm in this paper is better than the three al-
gorithms of Fab-Map, DBoW2, iBoW-LCD, SDA, and 

CALC. When the recall of loop closure detection reaches 
80%, the precision of three bag-of-words based ap-
proaches (Fab-Map, DBoW2 and iBoW-LCD) on the 
new college dataset respectively are 23.8%, 36.2% and 
45.9%, and the precision of the algorithm in this paper is 
77.6%. Although the precision of SDA and CALC is 
improved compared with three bag-of-words based ap-
proaches, it is still lower than the algorithm in this paper. 
On the city centre dataset, the performance decreases 
overall. When the recall of loop closure detection reaches 
80%, the precision of three bag-of-words based ap-
proaches (Fab-Map, DBoW2 and iBoW-LCD) are only 
3.1%, 12.3%, 21.1%. While the precision of the pro-
posed algorithm is 51.2%, which is still higher than the 
three comparison algorithms. Thus, it can be seen that 
the algorithm in this paper is still able to guarantee good 
precision at relatively high recall. 

To evaluate the temporal performance of the algorithm, 
the mean feature extraction time and loop closure query 
time are calculated on a sequence of keyframes from the 
new college and city centre datasets, as shown in Tab.7. 

 
Tab.7 Mean time to extract features and query 

 

Method 
Mean time to extract 

features (ms) 
Mean time to 

query (μs) 

Fab-Map 234.12 196.35 

DBoW2 19.58 173.25 

iBoW-LCD 315.24 147.20 

SDA 12.13 103.95 

CALC 9.93 59.25 

Ours (SAAE) 15.02 51.98 

 
Fab-Map, DBoW2 and iBoW-LCD are loop closure 

detection algorithms based on bag-of-words, which is 
implemented based on CPU, and the algorithm in this 
paper, SDA, and CALC are all implemented based on 
GPU. The network of SDA is stacked only by denoising 
auto-encoders, while CALC builds a deep convolutional 
auto-encoder model incorporating HOG (Histogram of 
Oriented Gradient) features. Compared with the above 
two algorithms, the network of the proposed algorithm is 
a stack of denoising auto-encoder, convolutional au-
to-encoder, and sparse auto-encoder with a more com-
plex structure, so the average feature extraction time is 
slightly higher than the above two algorithms. As for the 
loop closure query time, since the proposed algorithm 
combines the advantages of different kinds of au-
to-encoders, it can extract features better and takes less 
time compared to SDA and CALC. 

A loop closure detection algorithm based on SAAE is 
proposed to address the problem of limited precision and 
robustness of the traditional loop closure detection algo-
rithm due to its poor generalization ability in different 
scenarios. The proposed SAAE is composed of multiple 
layers of denoising auto-encoder, convolutional au-
to-encoder and sparse auto-encoder. Using unsupervised 
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learning to train the model layer by layer, the 
well-trained model is used to learn the input images. It 
can complete low-dimensional to high-dimensional fea-
ture extraction and output features for loop closure de-
tection. The test results on the new college and city cen-
tre datasets show that the algorithm in this paper is more 
robust than the traditional loop closure detection algo-
rithm in different scenarios, which is still able to guaran-
tee good precision at relatively high recall. 

The task of loop closure detection faces a very com-
plex dynamic environment. In future work, we will select 
more challenging datasets to train and test the proposed 
model, constantly adjusting the corresponding parame-
ters to improve the performance of the algorithm. There 
is still a long way to go to fully apply the proposed 
SAAE into actual visual SLAM systems, and we wish to 
further investigate this idea in future research. 

 
References 

[1]   DurrantWhyte Hugh F and Bailey Tim, Simultaneous 
Localization and Mapping. IEEE Robotics & Amp. Au-
tomation Magazine 13, 99 (2006). 

[2]   Jorge Fuentes-Pacheco, JoséRuiz-Ascencio and Juan 
Manuel Rendón-Mancha, Artificial Intelligence Review 
43, 55 (2015). 

[3]   Labbe M and Michaud F, IEEE Transactions on Robot-
ics 29, 734 (2013). 

[4]   Shekhar R and Jawahar C V, Word Image Retrieval 
Using Bag of Visual Words, IEEE 10th IAPR Interna-
tional Workshop on Document Analysis Systems (DAS), 
297 (2012). 

[5]   Cummins M and Newman P, International Journal of 
Robotics Research 30, 1100 (2011). 

[6]   D. Galvez-López and J. D. Tardos, IEEE Transactions 
on Robotics 28, 1188 (2012). 

[7]   E. Garcia-Fidalgo and A. Ortiz, IEEE Robotics and 
Automation Letters 3, 3051 (2018). 

[8]   Liu Y and Zhang H, Visual Loop Closure Detection 
with a Compact Image Descriptor, IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 
1051 (2012). 

[9]   Zhang G, Lilly M J and Vela P A, Learning Binary Fea-
tures Online from Motion Dynamics for Incremental 
Loop-Closure Detection and Place Recognition, IEEE 
International Conference on Robotics and Automation 
(ICRA), 765 (2016). 

[10]   Loukas Bampis, Angelos Amanatiadis and Antonios 
Gasteratos, The International Journal of Robotics Re-
search 37, 62 (2018). 

[11]   G. Zhang, X. Yan and Y. Ye, Loop Closure Detection 
Via Maximization of Mutual Information. IEEE Access, 
124217 (2019). 

[12]   Liu Q and Duan F, Intelligent Service Robotics 12, 303 
(2019). 

 
 

[13]   Azam Rafique Memon, Hesheng Wang and Abid Hussain, 
Robotics and Autonomous Systems 126, 103470 
(2020). 

[14]   Gomez-Ojeda R, Lopez-Antequera M, Petkov N and 
Gonzalez-Jimenez J, Training a Convolutional Neural 
Network for Appearance-Invariant Place Recognition. 
Computer Science, 1505 (2015). 

[15]   Gao X and Zhang T, Autonomous Robots 41, 1 (2017). 
[16]   Merrill N and Huang G Q, Lightweight Unsupervised 

Deep Loop Closure, arXiv:1805.07703, 2018. 
[17]   Burguera A and Bonin-Font F, Journal of Intelligent & 

Robotic Systems 100, 1157 (2020). 
[18]   Fei Wang, Xiaogang Ruan and Jing Huang, IOP Con-

ference Series: Materials Science and Engineering 563, 
052082 (2019). 

[19]   Aritra Mukherjee, Satyaki Chakraborty and Sanjoy 
Kumar Saha, Applied Soft Computing 80, 650 (2019). 

[20]   Chen B, Yuan D and Liu C, Applied Sciences 9, 1120 
(2019). 

[21]   Gao Xiang and Zhang Tao, Fourteen Lectures on Visual 
SLAM: From Theory to Practice (2nd Edition), Beijing: 
Publishing House of Electronics Industry, 302 (2019). 

[22]   S. Lange and M. Riedmiller, Deep Auto-Encoder Neural 
Networks in Reinforcement Learning, The 2010 Interna-
tional Joint Conference on Neural Networks, 1 (2010). 

[23]   Vincent P, Larochelle H and Bengio Y, Extracting and 
Composing Robust Features with Denoising Autoen-
coders, Machine Learning, Proceedings of the Twen-
ty-Fifth International Conference, 1096 (2008). 

[24]   Masci J, Meier U and Ciresan D, Stacked Convolutional 
Auto-Encoders for Hierarchical Feature Extraction. Ar-
tificial Neural Networks and Machine Learning 
(ICANN), International Conference on Artificial Neural 
Networks. 52 (2011). 

[25]   Zhang L, Lu Y and Wang B, Neural Process Lett 47, 
829 (2018). 

[26]   Jiang X, Zhang Y, Zhang W and Xiao X, A Novel 
Sparse Auto-Encoder for Deep Unsupervised Learning, 
Sixth International Conference on Advanced Computa-
tional Intelligence (ICACI), 256 (2013). 

[27]   Moacir Ponti, Josef Kittler, Mateus Riva, Teófilo de 
Campos and Cemre Zor, Pattern Recognition 61, 470 
(2017). 

[28]   Vincent P, Larochelle H and Lajoie I, Journal of Ma-
chine Learning Research 11, 3371 (2010). 

[29]   Bordes A, Bottou, Léon and Gallinari P, Journal of Ma-
chine Learning Research 10, 1737 (2009). 

[30]   Cummins M and Newman P, International Journal of 
Robotics Research 27, 647 (2008). 

[31]   Kejriwal N, Kumar S and Shibata T, Robotics and Au-
tonomous Systems 77, 55 (2016). 

[32]   B. Zhou, A. Lapedriza, A. Khosla, A. Oliva and A. 
Torralba, IEEE Transactions on Pattern Analysis and 
Machine Intelligence 40, 1452 (2018).  


